Discrete mechanics and variational integrators
نویسنده
چکیده
This paper gives a review of integration algorithms for finite dimensional mechanical systems that are based on discrete variational principles. The variational technique gives a unified treatment of many symplectic schemes, including those of higher order, as well as a natural treatment of the discrete Noether theorem. The approach also allows us to include forces, dissipation and constraints in a natural way. Amongst the many specific schemes treated as examples, the Verlet, SHAKE, RATTLE, Newmark, and the symplectic partitioned Runge–Kutta schemes are presented.
منابع مشابه
Total Variation and Variational Symplectic-Energy- Momentum integrators
In 1980’s, Lee proposed an energy-preserving discrete mechanics with variable time steps by taking (discrete) time as dynamical variable [2, 3, 4]. On the other hand, motivated by the symplectic property of Lagrangian mechanics, a version of discrete Lagrangian mechanics has been devoloped and variational integrators that preserve discrete symplectic two form have been obtained [11, 12, 15, 16,...
متن کامل. N A ] 1 8 A ug 2 00 5 GENERALIZED GALERKIN VARIATIONAL INTEGRATORS
Abstract. We introduce generalized Galerkin variational integrators, which are a natural generalization of discrete variational mechanics, whereby the discrete action, as opposed to the discrete Lagrangian, is the fundamental object. This is achieved by approximating the action integral with appropriate choices of a finite-dimensional function space that approximate sections of the configuratio...
متن کاملGeneralized Galerkin Variational Integrators
We introduce generalized Galerkin variational integrators, which are a natural generalization of discrete variational mechanics, whereby the discrete action, as opposed to the discrete Lagrangian, is the fundamental object. This is achieved by approximating the action integral with appropriate choices of a finite-dimensional function space that approximate sections of the configuration bundle a...
متن کاملDiscrete Hamiltonian variational integrators
We derive a variational characterization of the exact discrete Hamiltonian, which is a Type II generating function for the exact flow of a Hamiltonian system, by considering a Legendre transformation of Jacobi’s solution of the Hamilton–Jacobi equation. This provides an exact correspondence between continuous and discrete Hamiltonian mechanics, which arise from the continuousand discrete-time H...
متن کاملLagrangian mechanics and variational integrators on two-spheres
Euler–Lagrange equations and variational integrators are developed for Lagrangian mechanical systems evolving on a product of two-spheres. The geometric structure of a product of two-spheres is carefully considered in order to obtain global equations of motion. Both continuous equations of motion and variational integrators completely avoid the singularities and complexities introduced by local...
متن کاملDiscrete Dirac Structures and Variational Discrete Dirac Mechanics
We construct discrete analogues of Dirac structures by considering the geometry of symplectic maps and their associated generating functions, in a manner analogous to the construction of continuous Dirac structures in terms of the geometry of symplectic vector fields and their associated Hamiltonians. We demonstrate that this framework provides a means of deriving implicit discrete Lagrangian a...
متن کامل